Classical Theory of Atom Scattering from Corrugated Surfaces

نویسنده

  • W. W. Hayes
چکیده

A theory based in the semiclassical eikonal approximation is developed to describe energy transfer in the collision of an atomic projectile with a surface which is either ordered or disordered. This theory is extended from the quantum mechanical regime to the classical regime of complete quantum decoherence via the Bohr correspondence principle of large numbers of excited quanta. In the quantum mechanical regime the theory reproduces the well-known eikonal approximation for elastic collisions, provides a simple and useful expression for single phonon inelastic scattering, and leads to further expressions for multiple phonon transfers. In the classical limit the theory produces an expression that includes the effects of surface corrugation in addition to the excitations of large numbers of phonons. This new theory shows that a simple measurement of the most probable intensity of energy-resolved scattering spectra taken as a function of surface temperature, with all other experimentally controllable parameters held fixed, can be used to extract the surface corrugation amplitude. Comparisons with data for Ar scattering from the molten metals Ga and In shows good agreement with the measured energy resolved spectra, the in-plane angular distributions, the out-of-plane angular distributions and produces values for the corrugation amplitudes that range from 10 to 30% of the average interparticle spacing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second order classical perturbation theory for atom surface scattering: analysis of asymmetry in the angular distribution.

A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the loc...

متن کامل

Inversion of randomly corrugated surface structure from atom scattering data

The sudden approximation is applied to invert structural data on randomly corrugated surfaces from inert atom scattering intensities. Several expressions relating experimental observables to surface statistical features are derived. The results suggest that atom (and in particular He) scattering can be used profitably to study hitherto unexplored forms of complex surface disorder.

متن کامل

Classical singularities in chaotic atom-surface scattering.

In this paper we show that the diffraction condition for the scattering of atoms from surfaces leads to the appearance of a distinct type of classical singularity. Moreover, it is also shown that the onset of classical trapping or classical chaos is closely related to the bifurcation set of the diffraction-order function around the surface points presenting the rainbow effect. As an illustratio...

متن کامل

Causal trajectories description of atom diffraction by surfaces

The method of quantum trajectories proposed by de Broglie and Bohm is applied to the study of atom diffraction by surfaces. As an example, a realistic model for the scattering of He off corrugated Cu is considered. In this way, the final angular distribution of trajectories is obtained by box counting, which is in excellent agreement with the results calculated by standard S matrix methods of s...

متن کامل

Quantum manifestations of chaos in elastic atom-surface scattering

Quantum manifestations of chaos in the diffraction of atoms from corrugated surfaces, for a range of initial conditions easily attainable in scattering experiments, are presented and discussed. The appearance of strong oscillations in diffraction patterns is shown to be directly related to the presence of classical chaos and threshold effects. We also show that the autocorrelation function for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013